Sign in →

Test Code LABYEHRL Ehrlichia/Anaplasma, Molecular Detection, PCR, Blood

Additional Codes

YEHRL


Specimen Required


Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Royal blue top (EDTA), pink top (EDTA), or sterile vial containing EDTA-derived aliquot

Specimen Volume: 1 mL

Collection Instructions: Send whole blood specimen in original tube (preferred).


Useful For

Evaluating patients suspected of acute anaplasmosis or ehrlichiosis

 

This test should not be used for screening asymptomatic individuals.

Method Name

Real-Time Polymerase Chain Reaction (PCR)/DNA Probe Hybridization

Reporting Name

Ehrlichia/Anaplasma, PCR, B

Specimen Type

Whole Blood EDTA

Specimen Minimum Volume

0.3 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Whole Blood EDTA Refrigerated 7 days

Reject Due To

Gross hemolysis OK
Gross lipemia Reject

Clinical Information

Ehrlichiosis and anaplasmosis are emerging zoonotic tick-borne infections caused by Ehrlichia and Anaplasma species, respectively. These obligate intracellular, gram-negative rickettsial organisms infect leukocytes and cause a potentially serious febrile illness in humans.

 

Human granulocytic anaplasmosis (HGA), formerly known as human granulocytic ehrlichiosis, is caused by Anaplasma phagocytophilum, which is transmitted through the bite of an infected Ixodes species tick. The epidemiology of this infection in the US is similar to that of Lyme disease (caused by Borrelia burgdorferi and B mayonii) and babesiosis (caused primarily by Babesia microti), which all have the same tick vector. HGA is most prevalent in the upper Midwest and the Northeastern US.

 

Human monocytic ehrlichiosis (HME) is caused by Ehrlichia chaffeensis, which is transmitted by the Lone Star tick, Amblyomma americanum. Most cases of HME have been reported from the Southeastern and South-Central regions of the United States. Ehrlichia ewingii, the known cause of canine granulocytic ehrlichiosis, can occasionally cause an HME-like illness in humans. Clinical features and laboratory abnormalities are similar to those of E chaffeensis infection, and antibodies to E ewingii cross-react with current serologic assays for detection of antibodies to E chaffeensis.

 

Most recently, Mayo Clinic Laboratories detected a new species of Ehrlichia in patients with exposure to ticks in Wisconsin and Minnesota. This new pathogen, called E muris eauclairensis, causes a similar disease to ehrlichiosis due to E chaffeensis and E ewingii and may cause more severe disease in immunocompromised hosts.

 

Most cases of anaplasmosis and ehrlichiosis are subclinical or mild, but infection can be severe and life-threatening in some individuals. Fever, fatigue, malaise, headache, and other "flu-like" symptoms, including myalgias, arthralgias, and nausea, occur most commonly. Central nervous system involvement can result in seizures and coma.

 

Diagnosis may be challenging since the patient's clinical course is often mild and nonspecific. This symptom complex is easily confused with other illnesses such as influenza or other tick-borne zoonoses. Clues to the diagnosis of anaplasmosis/ehrlichiosis in an acutely febrile patient after tick exposure include laboratory findings of leukopenia, thrombocytopenia, and elevated serum aminotransferase levels. Intra-granulocytic morulae may be observed on peripheral blood smear in approximately 70% of cases of anaplasmosis, but intra-leukocytic morulare are rarely seen in human ehrlichiosis.

 

Definitive diagnosis is usually accomplished through polymerase chain reaction (PCR) and serologic methods, with the preferred method varying based on the time of presentation in relation to the onset of clinical symptoms. PCR is the most sensitive and specific method of detection in the first week of illness, whereas serology is the preferred method after this period. 

 

The Mayo Clinic PCR assay is capable of detecting and differentiating A phagocytophilum, E chaffeensis, E ewingii, and E muris eauclairensis.

 

It is important to note that concurrent infection with A phagocytophilum, Borrelia burgdorferi, and Babesia microti is not uncommon, as these organisms share the same Ixodes tick vector. Additional testing for these pathogens, including Lyme disease serology, may be indicated.

Reference Values

Negative

Reference values apply to all ages.

Interpretation

Positive results indicate presence of specific DNA from Ehrlichia chaffeensis, Ehrlichia ewingii, Ehrlichia muris eauclairensis organism, or Anaplasma phagocytophilum and support the diagnosis of ehrlichiosis or anaplasmosis.

 

Negative results indicate absence of detectable DNA from any of these 4 pathogens in specimens but do not exclude the presence of these organisms or active or recent disease.

 

Since DNA of E ewingii is indistinguishable from that of Ehrlichia canis by this rapid polymerase chain reaction assay, a positive result for E ewingii/canis indicates the presence of DNA from either of these 2 organisms.

Cautions

This assay should only be used to test patients with signs and symptoms of ehrlichiosis or anaplasmosis.

 

A negative result does not indicate absence of disease.

 

Inadequate specimen collection or improper conditions for storage or transport may invalidate test results.

 

This test may detect DNA of Ehrlichia canis (reported to cause rare asymptomatic infection in Venezuela only).

 

This polymerase chain reaction  test does not detect DNA of Rickettsia (formerly Ehrlichia) sennetsu, which has been reported to cause a rare mononucleosis-like illness in humans (in Japan and Malaysia).

Method Description

Nucleic acid is extracted from the pathogens in blood using the automated MagNA Pure LC system. The extract is then transferred to a 96-well Lightcycler 480 dish for amplification. The LightCycler 480 is an automated instrument that amplifies and monitors the development of target nucleic acid (amplicon) after each cycle of polymerase chain reaction (PCR). The DNA target for PCR assay is groEL, the open reading frame gene segment of the heat-shock protein operon (groEL), which is present at a frequency of 1 copy per organism in pathogenic species of Anaplasma and Ehrlichia. A specific base pair DNA target sequence is amplified by PCR. The detection of amplicon is based on fluorescence resonance energy transfer, which utilizes a hybridization probe with a donor fluorophore, fluorescein, at the 3' end and a second hybridization probe with an acceptor fluorophore, LC-Red 640, at the 5' end. When the target amplicon is present, the LC-Red 640 emits a measurable and quantifiable light signal at a specific wavelength. Presence of the specific organism nucleic acid may be confirmed by performing a melting curve analysis of the amplicon. Using features of the melting curve analysis, the assay primers and specific hybridization probes are able to detect and differentiate among Anaplasma phagocytophilum, Ehrlichiosis chaffeensis, Ehrlichia muris eauclairensis, and Ehrlichia ewingii/canis. Due to close proximity of the melting curves of Ehrlichia ewingii and Ehrlichia canis, this assay cannot distinguish between these 2 organisms.(Unpublished Mayo method)

Day(s) Performed

Monday through Saturday

Report Available

Same day/1 to 4 days

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

87468

87484

87798 x 2

87999 ( if appropriate for government payers)

LOINC Code Information

Test ID Test Order Name Order LOINC Value
EPCRB Ehrlichia/Anaplasma, PCR, B 87548-4

 

Result ID Test Result Name Result LOINC Value
618323 Anaplasma phagocytophilum 87558-3
618324 Ehrlichia chaffeensis 87559-1
618325 Ehrlichia ewingii/canis 87560-9
618326 Ehrlichia muris eauclairensis 87561-7

Forms

If not ordering electronically, complete, print, and send Microbiology Test Request (T244) with the specimen.